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ABSTRACT

We present an in-depth study on the impact of spatiotemporal Raman enhancement in molecular gas-filled hollow-core fibers (HCFs),
demonstrating the efficient generation and post-compression of multidimensional solitary states (MDSS). Through different experimental
scenarios—employing large-core HCFs filled with molecular gases (N, and N,O) and driven by high energy, sub-picosecond and picosecond
Fourier transform-limited ytterbium laser pulses—this work leverages multimode propagation and enhanced spatiotemporal interactions
to achieve significant spectral broadening and asymmetric redshift, contrasting sharply with self-phase modulation. Our findings reveal that,
beyond the regime of maximum nonadiabatic molecular alignment, spatiotemporal nonlinear enhancement primarily governs spectral broad-
ening for input pulse durations up to 1 ps. The process shows limited sensitivity to input pulse duration and the two investigated molecular
gases (N, and N,O), with only subtle differences in broadening arising from their distinct Raman spectroscopic properties. Furthermore,
post-compression of MDSS was achieved in various cases. Notably, using 7 mJ, 1 ps laser pulses, we generated 22 fs pulses with a 47% energy
conversion efficiency of the input pulse energy. These results position MDSS as a powerful platform for generating high-energy, ultrashort
pulses with tunable wavelengths, offering a robust solution for applications such as high harmonic generation.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/).
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. INTRODUCTION

In recent years, there has been growing interest in diode-
pumped Yb-based laser systems. These lasers utilize innovative
geometries, such as fibers,' InnoSlabs,” thin disks,” and cryogeni-
cally cooled amplifiers,” and have enabled the generation of ultra-
short pulses with energies up to several hundreds of mJ, position-
ing them as promising candidates for next-generation high-power
applications.” Although Yb-based systems typically produce longer
pulse durations due to their narrow emission bandwidth, their sim-
pler cooling requirements and cost-effectiveness make them ideal
for applications needing high-energy, high-repetition-rate lasers.
These advantages make Yb lasers highly attractive for advanced
laser-driven applications® and offer great potential for laser-based
plasma x-ray sources,” inverse Compton scattering,” acceleration
of ultrarelativistic electron beams, " high harmonics,'"'” and THz
generation.’ i

Most Yb-based lasers, such as Yb-doped fiber chirped pulse
ampliﬁers,15 2 Yb:KGW,”' " and Yb:CaF,,>>*° typically operate
with pulse durations of hundreds of femtoseconds, with pulse
energies ranging from hundreds of microjoules to hundreds of mil-
lijoules (Fig. 1). Among them, CPA-based thin-disk Yb:YAG lasers
are considered the state-of-the-art in modern laser technology, offer-
ing an outstanding combination of a high average power, high pulse
energy, and excellent beam quality from the kHz to MHz repetition
rate, typically with pulse durations in the ps range.”” ' Subsequent
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spectral broadening is, therefore, necessary to overcome their gain
bandwidth limitations and meet the sub-50 fs requirements for
applications such as ultrafast molecular spectroscopy and HHG.
An ideal driver for high-power ultrafast applications must gener-
ate short pulses (tens of femtoseconds) with high energy (several
m]J) and tunable wavelengths.'” Although optical parametric ampli-
fication (OPA) and optical parametric chirped pulse amplification
(OPCPA) are frequently used to produce such pulses, these methods
are complex, often featuring multiple nonlinear amplification stages,
and face limitations such as low conversion efficiency and imperfect
beam quality.””"’

This has driven the demand for efficient compression tech-
niques tailored to ultrashort pulses. One approach is nonlinear
pulse compression, commonly referred to as the post-compression
method. Techniques such as filamentation®* and bulk material com-
pression™ have achieved notable results, including the compression
of Yb-based laser pulses to 30 fs at the m] level.*® However, chal-
lenges such as plasma effects and optical damage limit scaling
to higher energies. Recent advances in gas-filled multi-pass cells
have enabled efficient pulse compression beyond the mJ range,”
including the compression of ps Yb disk amplifiers”” and the gener-
ation of few-cycle pulses.”® For instance, a 1.3 ps Yb laser has been
compressed to 37 fs at 100 mJ,”! while sub-10 fs pulses have been
achieved using two-stage multi-pass cells.”” However, this technique
requires precise dispersion control with chirped mirrors and can
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FIG. 1. Conceptual schematic of the nonlinear spectral broadening ratio as a function of pulse duration at fixed pressure and constant peak power for the specific fiber length.
In single-mode propagation (a), molecular alignment theory predicts reduced spectral broadening ratio for pulse durations longer than the characteristic molecular rotational
timescale, 7., (which is highlighted by the shaded light blue horizontal bar). For longer pulses, the nonlinear propagation is dominated by SPM with a limited compression ratio
(dashed blue curve). For multimode propagation (b), experimental observations in multimode propagation show a stark contrast, with efficient spectral broadening persisting
beyond 7, due to enhanced spatiotemporal interactions and mode coupling. The black curves represent the range of spectral broadening as a function of pulse duration for

both single-mode and multimode propagation cases.
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suffer from beam quality limitations at high energies, reducing the
overall efficiency and stability of the compressed pulses.””’

Over the past three decades, gas-filled HCF-based nonlinear
compression techniques have consistently demonstrated the ability
to generate high-energy, few-cycle pulses, initially with Ti:sapphire
(Ti:Sa) lasers.” """ These methods typically involve nonlinear spec-
tral broadening in gas-filled fibers, followed by spectral phase
compensation through chirped mirrors or bulk materials.””** His-
torically, HCF-based compressors have utilized SPM to broaden
ultrashort pulse spectra in noble gases. Using this method, sub-
10 fs durations with m]J-level pulse energies have been reported
for Ti:Sa lasers.””*° More recently, nonlinear pulse propagation
in gas-filled HCFs has shown particular promise for producing
high-energy, high-repetition-rate ultrashort pulses, especially when
combined with Yb-based laser systems.'”** Significant pulse com-
pression results, generating few-cycle pulses with sub-10 fs dura-
tions, have been achieved through moderately driving SPM over
single-stage”’ ** and two-stage’”"’ noble gas-filled HCFs, for Yb-
based lasers with initial pulse durations ranging from 150 to 300 fs.
Despite its advantages in compressing ultrafast pulses, the method
has limitations, with the compression ratio inherently restricted and
requiring longer fibers or multiple stages for maximum compres-
sion. In addition, the spectral broadening ratio decreases with longer
initial pulse durations (as shown in Fig. 1), making this approach less
effective for lasers in the ps range.

Recent advancements have demonstrated the potential of
molecular gases as highly efficient nonlinear media for spectral
broadening.” > Unlike noble gases, molecular gases exhibit a
delayed nonlinear response due to molecular alignment and bond
stretching under strong laser fields.”” By tuning the input pulse
duration to match the molecular rotational timescale, one can
achieve efficient spectral broadening. In particular, N,O-filled HCFs
have shown a record 45-fold compression, producing broad super-
continuum spectra ideal for few-cycle pulse generation.”’ How-
ever, 1D simulations suggest that for pulse durations beyond this
timescale, spectral broadening diminishes greatly and becomes sym-
metric because SPM begins to dominate over Raman effects’
[Fig. 1(a)]. This contrast is further highlighted by a clear discrepancy
between the experimental results of input pulse duration scans and
1D simulation predictions.” A significant breakthrough occurred
with the observation of multidimensional solitary states (MDSS)
in nitrogen-filled HCFs, driven by sub-ps near-infrared pulses.”
This regime, characterized by strong intermodal interactions and
enhanced Raman nonlinearities, enables efficient broadband, red-
shifted multimode solitary states. Unlike 1D propagation, where
spectral broadening reduces with longer pulse durations, MDSS
in multimode fibers maintain efficient broadening through the
combined effects of stimulated Raman scattering (SRS) and mode
coupling.”’ >

As shown in Fig. 1(b), the multimode nature of gas-filled
HCFs and spatiotemporal nonlinear enhancement due to the cre-
ation of stable multimode solitary states ensure efficient spec-
tral broadening even as pulse duration increases.”” This unique
behavior makes molecular gas-filled HCFs as highly promising
for nonlinear spectral broadening across a broad range of pulse
durations, from 100 fs to ps, covering the typical operating
range of the state-of-the-art Yb lasers. Despite earlier demonstra-
tions using chirped pulses, no experimental evidence of MDSS
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driven directly by transform-limited sub-ps or ps lasers has been
reported.

In this paper, we demonstrate, for the first time, the efficient
generation of MDSS using sub-ps and ps Yb-based laser systems,
followed by extreme nonlinear compression. Using 700 fs and 1 ps
pulses in molecular gas-filled HCFs, we generated MDSS, which
were subsequently compressed to ~20 fs using simple dispersion
compensation with bulk materials. Contrary to expectations based
on 1D propagation, our experimental results indicate that for pulse
durations up to 1 ps—covering the primary operating range of ultra-
fast Yb lasers—spatiotemporal nonlinear enhancement dominates
spectral broadening, making it less sensitive to the input pulse dura-
tion in this regime. In addition, measurements with N, and N,O
reveal that this enhanced nonlinearity is not strongly dependent on
the gas type or its molecular timescale. This challenges the assump-
tion that molecules with slower rotational response times necessarily
lead to greater broadening for longer pulse durations.

Il. RESULTS AND DISCUSSION

To realize experiments across a broad range of parameter space,
experiments were conducted using multiple laser sources in differ-
ent facilities, using both N, - and N, O-filled fibers with varying inner
diameters. One of the experiments was conducted at the Advanced
Laser Light Source (ALLS) user facility. The laser source was a
Yb-based system (Amplitude, Magma), emitting 700 fs pulses at a
central wavelength of 1030 nm and operating at a repetition rate
of 1 kHz. The fiber was operated with a uniform static pressure,
which was achieved by first evacuating the fiber using a vacuum
pump and then by injecting the molecular gas (either N, or N,O)
into the fiber and allowing the system to equilibrate. The laser beam
was focused into a stretched HCF (few-cycle Inc.) with a core dia-
meter of 500 ym and a length of 2.6 m. We measured the spectral
broadening and energy of the output beam using a UV-Vis and NIR
spectrometer, along with a power meter. The pulse duration, as well
as the spectral and temporal phases of the output beam, was charac-
terized using a home-built Second Harmonic Generation Frequency
Resolved Optical Gating (SHG-FROG) setup (see the supplementary
material for setup schematic). To further investigate the capabili-
ties of the MDSS method, various spectral filters were applied to
select specific bandwidths of the output spectra generated by the
MDSS process. This allowed us to evaluate the temporal, spectral,
and spatial characteristics of the output pulses.

We first investigated the effect of increasing pressure on the
spectral broadening of input pulses in an N, and N,O gas-filled
HCEF. By maintaining a constant peak power at the fiber input (~5.4
GW for the N, experiment and ~0.67 GW for the N,O exper-
iment), we recorded the spectral broadening across different gas
pressures in the static regime for both N, and N,O gases. The
dependence of spectral broadening on the injected N> and N,O
gas pressure is illustrated in Figs. 2(a) and 2(b). In both cases,
we observed a significant redshift in spectral broadening. Accord-
ing to Safaei et al.,*” the MDSS generation involves coupling the
beam into high-order modes (HOMs) near the fiber input via self-
focusing, leading to intermodal four-wave mixing (IFWM) and the
generation of new frequencies. Once the bandwidth of these new fre-
quencies overlaps with the Raman gain, intermodal SRS occurs. This
process produces highly spatiotemporally localized solitary pulses
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FIG. 2. Spectral broadening as a function of pressure for N, (a) and NO (b) gases. Input pulse energies were 4 mJ for N, and 0.5 mJ for N, O. Panels (c) and (d) show the
fiber transmission (blue circles) and the energy transmitted to the redshifted region (MDSS energy) (red squares) for N, and N, O, respectively.

as a result of intermodal interactions that balance diffraction and
dispersion.”’*” Therefore, in the MDSS, strong intermodal interac-
tions induce enhanced Raman nonlinearity in the large-core HCF,
resulting in broadband redshifted spectra, which is evident in the
spectral scans of both N>O and N, gases. In addition, as pressure
increases, the enhanced nonlinearity of the medium amplifies the
Raman gain, leading to more spectral broadening.

Figures 2(c) and 2(d) illustrate the fiber transmission and the
percentage of the output beam energy in the redshifted region (cal-
culated as redshifted energy/output energyx100) using a 1050 nm
spectral filter for N, and N,O gases, respectively. The data clearly
show that increasing the gas pressure reduces fiber transmission for
both gases. This decline can be attributed to the fact that, as the pres-
sure increases, the input pulse peak power approaches the critical
power for self-focusing. In a static configuration, phenomena such as
Kerr lensing likely occur before coupling to the fiber, reducing cou-
pling efficiency and, consequently, fiber transmission. Despite this,
the experimental results indicate that the energy transferred to the
redshifted region, which corresponds to the MDSS, increases with
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rising gas pressure, reaching a peak of ~62% for N, and 65% for
NO. Beyond this point, further pressure increases cause the energy
transfer to the redshifted region to plateau even though the fiber
transmission continually decreases. This finding is remarkable, as it
demonstrates that while the total fiber transmission decreases with
increased pressure, the efficiency of energy transfer from the main
beam to the MDSS part does not decline. This behavior suggests that
a portion of the input energy is transferred to the MDSS region early
in the fiber, where it undergoes soliton frequency shifts and spec-
tral broadening. The energy loss from the main beam does not affect
the MDSS in the remaining length of the fiber. As a result, even as
the overall fiber transmission decreases, the spectral broadening per-
sists, driven by increasing the gas pressure and nonlinearity and the
sustained energy transfer to the redshifted part of the spectrum.

As mentioned, in molecular gases, the SRS mechanism intro-
duces nonlinear effects due to the rotational degrees of freedom.
These effects are the result of the laser field exerting a torque on
the molecular frame, aligning it with the direction of the field.
Longer laser pulses increase the degree of molecular alignment,

10, 046112-4
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thus enhancing nonlinearity. At the same time, the molecular align-
ment response is delayed compared with the pulse, which causes
the spectrum to shift predominantly toward the longer wavelength.
Theoretically and experimentally, it has been shown that the opti-
mal pulse durations for achieving the broadest spectral bandwidth
are around 150 fs for N, and 280 fs for N,O.”" In this study,
we used 700 fs pulses, which are longer than the optimal duration
for maximizing spectral broadening in N, and N,O. It is partic-
ularly interesting to observe how the spectral broadening behaves
when we are far from the optimal pulse duration for nonadiabatic
alignment. A key question arises: Will N,O experience more broad-
ening due to its slower response time when the pulse accumulates
the same nonlinear B integral for both gases? This question is criti-
cal because the molecular alignment and rotational dynamics of N,O
occur over a longer timescale compared with those of N,. Under the
same nonlinear conditions, the slower response of N,O could lead
to more pronounced spectral broadening, as the delayed nonlinear-
ities, such as Raman scattering, may have a stronger impact over the
pulse duration. Exploring this behavior can provide insights into the
role of molecular response times in shaping the nonlinear dynam-
ics of spectral broadening, especially when operating away from the
optimal pulse duration for nonadiabatic alignment.

The nonlinearity of the materials at different wavelengths is
defined by the B-integral:

L

B= kofnzl(z)dz ~

0

27112 Imax L

o 1

where 7, is the nonlinear refractive index, Imax is the on-axis peak
intensity of the laser pulse, and L is the effective length of the
material. To maintain a constant B-integral, we kept Ay and L the
same for both gases. Thus, to have the same B-integral, the condi-
tion (nz)y, = (na2I)y, o must be satisfied. Nonlinear refractive index
values for N, and N,O are primarily derived from Ref. 55 for pulse
durations near the rotational alignment time frames. For longer
pulse durations, such as the 700 fs pulses used in this study, we apply
the following equation to estimate the effective nonlinear refractive
index (11;,0):™°

w
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)
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where 7, and ny,: correspond to pure electronic and rotational
nonlinearities and 7 is a characteristic response time. Based on this
approach, the ratio of N eff for N,O and N, at 700 fs is calculated to
be ~13. Therefore, by selecting In, = 13 In,o0 at a specific pressure,
we can approximate the B-integral as being the same for both gases.
Under these conditions, we were able to compare the spectral broad-
ening and the efficiency of energy transmission to the redshifted
regions in both gases.

As shown in Fig. 3(a), while the overall spectral broadening is
comparable for both N, and N,O, subtle differences in the spec-
tral shapes can be observed. These differences arise from the distinct
molecular properties and nonlinear responses of the two gases, par-
ticularly the slower rotational response time and higher Raman gain
coefficient of N, O, which influence the spectral broadening dynam-
ics slightly and lead to a modest difference in the redshifted spectra
under the experimental conditions. Figure 3(b) demonstrates that
the energy transmission efficiency remains comparable across vari-
ous pressures. However, at higher pressures, the energy transmission
efficiency to the red part of the spectrum is slightly more pronounced
in N;O compared with N,. This effect can be attributed to the higher
Raman gain coefficient in N,O in comparison with N, gas for this
pulse duration. These results reveal that the spectral broadening is
less affected by the type of gas, despite differences in the molecular
properties and Raman gain coefficients of N, and N,O. In addition,
they suggest that in the regime away from maximum nonadiabatic
molecular alignment, spectral broadening remains relatively insensi-
tive to the input pulse duration up to 1 ps, in contrast to broadening
dominated by SPM. This highlights the significant role of spatiotem-
poral Raman enhancement in shaping the observed dynamics, even
for longer laser pulses in this unique regime of gas-filled HCFs.

To further elucidate the nature of the mentioned spatiotem-
poral nonlinear behavior, we examine the spectral broadening and
beam profiles of different spectral regions for both N, [Fig. 4(a)] and
N,O [Fig. 4(b)] gases at a pressure of 3 bar. In the case of N gas,
the input pulse energy was 5 mJ, and for N,O gas, the input pulse
energy was 0.4 mJ, with the same HCF (2.6 m length and 500 ym
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FIG. 3. Comparison of spectral broadening (a) and the efficiency of energy transfer to the redshifted part (b) for N, and N,O gases at different pressures, maintaining a
constant B-integral for both gases. The input pulse energy is 4 mJ for N, and 0.3 mJ for N,O.
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core diameter) used in both experiments. To capture spatial pro-
files, we used a short-pass filter (SPF) with a cutoff wavelength of
1000 nm for the blueshifted spectra, a bandpass filter (BPF) centered
at 1030 + 10 nm for the fundamental beam, and long-pass filters
(LPFs) with cut-on wavelengths of 1050 and 1100 nm for the var-
ious redshifted spectral regions. For both cases, in the blueshifted
region that occurs in the trailing edge of the pulses, there is a
lack of self-organization, leading to rapid power exchange between
higher-order modes and subsequent beam instability. Figure S2 of
the supplementary material presents 15 consecutive beam profiles of
the blueshifted region for N> O gas. These results show that the beam
profile for the blueshifted spectral range (900-1000 nm) exhibits
regions of both self-focusing and strong divergence, further empha-
sizing the intrinsic instability in this region. This instability arises
due to the lack of the Raman gain, which leads to a nonuniform
and unstable beam profile. Although ionization or harmonic gen-
eration may introduce additional perturbations, their contribution
is minor compared with the dominant spatiotemporal instability in
this region. However, in the redshifted region associated with the
MDSS, the beam profile is observed to be spatially clean and stable.
Here, we observe that the spectral broadening due to MDSS results
in a redshifted output beam with a high spatial profile quality.

To characterize the broadband, redshifted MDSS output, we
employed SHG-FROG. Figures 5(a)-5(h) present experimental and
reconstructed spectrograms, as well as their corresponding spectra
from the FROG results and the temporal profile of the pulses after
the post-compression for N; and N,O gases under the conditions
described in Fig. 4. For this pulse characterization, we used a LPF
with a cutoff wavelength of 1050 nm to isolate the MDSS portion of
the spectra. Our results indicate that for the N; case, considering the
dispersion of the gas within the output tube of the setup, a 5 mm

APL Photon. 10, 046112 (2025); doi: 10.1063/5.0252893
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1150 1200

a pressure of 3 bar. In (a), 5 mJ input
pulses are used with N, gas, while in (b),
0.4 mJ laser pulses are applied with N,O
gas. The scale bar represents 200 ym.

1250 1300

vacuum system output window, a 0.5 mm collimating lens, and 5 m
of air propagation, the output pulse duration reached ~62 fs, indicat-
ing partial compression. Given the characteristic negative frequency
chirp of the MDSS output,””” we utilized an extra 12 mm-thick
BaF, window providing positive group velocity dispersion (GVD) in
the relevant wavelength range to further compress the output pulses.
This choice was made to effectively compensate for the negative
chirp and achieve optimal pulse compression, resulting in a pulse
duration of 24 fs, with a pulse energy of 1.3 mJ and a central wave-
length of 1150 nm. The peak power of this pulse reached ~46 GW (by
considering a Gaussian beam shape and 10% of pedestal). Achiev-
ing this pulse involved focusing a 4 mJ Yb-based laser pulse into the
HCEF filled with N, gas at 2 bar pressure. In this configuration, the
fiber transmission was ~52%, yielding 2.1 m] at the output. Approx-
imately 62% of this output pulse energy is transferred to the MDSS
part, with a central wavelength of 1150 nm and a pulse duration of
24 fs. In the case of N,O gas, we characterized the output pulse at
2 bar pressure using an input laser pulse with an energy of 0.5 m]J.
For this pulse characterization, we selected the MDSS portion of the
spectrum using an LPF with a cut-on wavelength of 1100 nm. In
this case, we achieved a pulse duration of 19 fs with a central wave-
length of 1200 nm. To compress this pulse, we used 9 mm-thick BaF,
windows. The energy of the output pulses in the MDSS part, mea-
sured with a spectral filter with a cutoff wavelength of 1100 nm, was
100 yJ. In gas-filled HCFs, modal dispersion and losses scale
inversely with the second and third power of the core size, respec-
tively. Consequently, large-core HCFs provide ultralow modal dis-
persion and minimal losses. In the high-energy regime, due to
self-focusing and diffraction effects, multiple modes can be created
at the fiber’s input. These multidimensional pathways enhance the
nonlinear effects, including SRS, throughout the propagation in the
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FIG. 5. Experimental [(a), (e), and (i)] and reconstructed [(b), (f), and (j)] spectrograms, along with the corresponding experimental (filled gray) and reconstructed (blue line)
spectra [(c), (g), and (k)] and the retrieved temporal intensity profiles of the compressed pulses [(d), (h), and (I)] for N, and N,O gases.  is the duration, and E is the energy

of the reconstructed pulse.

HCEF. Therefore, we employed a larger-core fiber (750 pym) with
reduced modal dispersion and filled it with N,O gas at a very low
pressure of 250 mbar to explore energy scaling. With a high input
energy of 6 mJ per pulse, we achieved notable spectral broaden-
ing at the fiber output (see the supplementary material, Fig. S3),
which was subsequently compressed to a pulse duration of 30 fs.
Figures 5(i) and 5(j) illustrate the experimental and reconstructed
spectrograms of the output pulses, while Fig. 5(k) shows the experi-
mental and retrieved spectra. The corresponding temporal profile of
the compressed pulses is displayed in Fig. 5(1). Thus, this method is a
pathway for energy scaling in HCF systems. The results demonstrate
that by using the larger core HCF or selecting a molecular gas with
a high ionization threshold, such as Ny, it is possible to increase the
input pulse energy to generate high-energy, short-duration pulses
with a tunable central wavelength at the output of a large HCF, even
when using longer input pulse durations (more than 700 fs).
Finally, we explored an alternative approach to demonstrate
that pulses generated through spatiotemporal nonlinearity are
largely independent of the input pulse duration. Even with longer
pulse durations, we achieved comparable results. For this second set
of experiments, we utilized a Yb laser based on thin-disk technol-
ogy (Dira 200-1, Trumpf Scientific Laser), located at the Advanced
Research Complex (ARC), with an output centered at 1030 nm and
producing 1 ps pulses at 1 kHz repetition rate. We focused these
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pulses with an energy of 7 mJ in a 2 m-long 500 ym core diameter
N gas-filled HCF. Note that in this case, we employed a differential
pressure scheme, where the fiber is evacuated at the entrance while
molecular gas is injected from the output end. This setup creates a
pressure gradient along the fiber length to mitigate Kerr lensing at
the fiber input and prevents a reduction in fiber transmission as pres-
sure increases. The total fiber transmission was ~80%, and we did not
observe a significant drop in transmission, even as the pressure was
increased to 4 bar.

Figure 6 presents the results used to characterize the output
pulses. Figures 6(a) and 6(b) show the experimental and recon-
structed spectrograms, while Fig. 6(c) compares the input and
output pulse spectra along with the reconstructed spectra. An LPF
with a cut-on wavelength of 1050 nm was used for pulse charac-
terization via SHG-FROG. The Wigner function of the retrieved
experimental SHG-FROG trace [Fig. 6(e)] indicates a significant
negative quadratic spectral phase at the leading edge of the out-
put pulse, which contains most of the energy. Therefore, we used
a 14 mm calcium fluoride (CaF,) window to compress the output
pulse, achieving a pulse duration of 22 fs [Fig. 6(d)] with a clean,
stable beam profile [Fig. 6(g)]. This process resulted in 2.8 m]J of
energy (~47% efficiency with respect to input pulse energy) in the
redshifted region, with a central wavelength of 1200 nm. In this case,
the output pulse was ~45 times shorter than the input pump pulse.
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The Wigner function of the compressed pulse [Fig. 6(f)] shows that
the pulse is free of chirp, indicating successful compensation of the
negative quadratic spectral phase with the CaF, window.

I1l. CONCLUSION

In this study, we have demonstrated the generation and charac-
terization of MDSS generated with picosecond and sub-picosecond
YD pulses within an HCF filled with molecular gases, specifically N,
and N,O. By systematically varying gas pressure and input pulse
energy, we observed a pronounced impact on spectral broaden-
ing and energy transmission. The experimental results underline
the importance of optimizing experimental parameters to achieve
desired outcomes in fine-tuning the central wavelengths of high-
energy ultrafast laser systems. We demonstrated that the efficiency
of spectral broadening in MDSS is less sensitive to both the input
pulse duration (up to 1 ps) and the type of gas used [at least for the
two investigated gases: N, and N,O)] when driven by a pump with
a pulse duration longer than the characteristic molecular alignment
time. Our experimental results show that both N, and N,O behave
similarly, with comparable spectral broadening and energy transfer
efficiencies to the redshifted region when the system’s nonlinear-
ity is maintained by adjusting the B-integral for a pulse duration
of around 700 fs. Here, unlike in single-mode propagation, the
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enhanced spatiotemporal interactions and mode coupling of the
system enhance nonlinear effects, allowing for more significant spec-
tral shifts even with longer pulses. In addition, we showed that this
enhancement becomes even more pronounced in larger core fibers,
where, despite using very low gas pressures, we still observed sig-
nificant spectral broadening and effective post-compression. Our
results also indicated that even with a longer pulse duration (1 ps),
we can achieve significant spectral broadening, and the output pulse
can be further compressed to 22 fs (45-fold compression), with a
central wavelength of 1200 nm and an energy conversion efficiency
of 47%. This highlights the versatility of our approach, offering
pathways for further exploration in laser technology and nonlinear
optics. Our findings not only confirm the feasibility of generating
stable MDSS for HCFs filled with molecular gases but also estab-
lish their potential for advanced applications, paving the way for
future research in this exciting field. Moreover, our results pro-
vide a promising way to generate short pulses driven by ps Yb
laser systems with doubles or triples of frequency. In an appropri-
ate Raman-active gas-filled fiber, the MDSS process can be driven
at 515 nm and perhaps even 343 nm. The method thus provides a
straightforward and reliable nonlinear frequency conversion tech-
nique to generate tunable ultrashort pulses in the UV-Vis spectral
region.
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SUPPLEMENTARY MATERIAL

The supplementary material provides details on the experimen-
tal setup and experimental spectral broadening results as a function
of input pulse energy for N,O gas with low pressures.
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