Reply

Reply to Comment on ‘Time delays in molecular photoionization’

P Hockett¹, E Frumker², D M Villeneuve³ and P B Corkum³

¹ National Research Council of Canada, 100 Sussex Drive, Ottawa, K1A 0R6, Canada
² Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
³ Joint Attosecond Science Laboratory, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, K1A 0R6, Canada

E-mail: paul.hockett@nrc.ca

Received 26 October 2016, revised 2 February 2017
Accepted for publication 22 February 2017
Published 15 March 2017

In a comment on our article Time delays in molecular photoionization [1], Baykusheva and Wörner [2] state that, to calculate photoionization time delays, the transition dipole matrix elements from the bound state to the continuum state must be included. We agree with this point, and that standard photoionization theory is correct; indeed the transition dipole matrix elements are included in our calculations. Perhaps the confusion arose from our simplified notation in section 2, where the transition dipoles are implicitly included in the final scattering wavefunction. However, as is clear from our section 3, and the online material referred to in section 3, the dipole matrix elements are included. In fact, in the additional work cited by Baykusheva and Wörner [3], they use the same software suite as we do to perform the photoionization calculations, namely ePolyScat [4–6], which is well-tested for photoionization problems and clearly contains the complete canonical photoionization physics [7]. Furthermore, without the transition dipole matrix elements, our results (e.g. figures 1 and 2 in the original manuscript) would not exhibit the detailed energy and angular structure that is apparent.

In sum, we can reassure readers that the formalism we applied is indeed canonical scattering and photoionization theory. Baykusheva and Wörner’s concern is, therefore, unfounded.

For interested readers, we note that a detailed, technical response, prepared by some of the present authors, is also available [8].

References

[6] Lucchese R R 2015 Lucchese Group Website (http://chem.tamu.edu/rgroup/lucchese/)

---

⁴ To view this online material please visit https://doi.org/10.6084/m9.figshare.2007486.